SKILL 3: Midpoints and Bisectors A line segment is formed by two endpoints and all the points between them. The **midpoint** of a segment divides it into two **congruent** segments. Congruent segments have equal lengths. *M* is the midpoint of \overrightarrow{AB} . $\overrightarrow{AM} \cong \overrightarrow{MB}$ \overline{EF} is the **bisector** of \overline{KL} . The two marks on \overline{KL} show equal parts. $\overline{KM} \cong \overline{ML}$ The midpoint of \overline{XY} is U, and \overline{WZ} is perpendicular to \overline{XY} at U. So \overline{WZ} is the **perpendicular bisector** of \overline{XY} . # Example Use the figure to name a line segment, two congruent segments, a midpoint, and a bisector. The two endpoints L and N form the line segment \overline{LN} . The tick marks show that $\overline{LO} \cong \overline{ON}$. So, O is the midpoint of \overline{LN} , \overline{MP} is a bisector of \overline{LN} . # **Guided Practice** Use the figure to name each of the following. - 1. a line segment _____ - 2. a midpoint _____ - 3. two congruent segments _____ # SKILL 3: Practice # Use the figure to name each of the following: - **1.** a midpoint _____ - 2. a line segment _____ - 3. a pair of congruent segments _____ - 4. a bisector _____ # Use the figure to name each of the following: - 5. a bisector that is not perpendicular _____ - 6. a perpendicular bisector _____ - 7. a pair of congruent segments _____ - 8. a midpoint _____ #### B is the midpoint of \overline{AC} . Tell whether each statement is true or false. - 9. AB ≅ BC _____ - **10.** AC is a bisector. _____ - 11. If BC measures 4 cm. the measure of \overline{AB} is 4 cm. **12.** Point *M* is the midpoint of which segment? - $\mathbf{A} \overline{RM}$ - \mathbf{B} \overline{SM} - C RE Skill 3 $D \overline{ST}$ 13. Lines j and k are parallel, and line q is perpendicular to line k. What is the measure of ∠3? Skill 2 - 90° - **H** 270° - **G** 180° - **J** 360°