Applications

1. a. (See Figure 1.)

- **c.** As length increases, width decreases at a decreasing rate.
- **d.** $w = \frac{16}{\ell}$ (or $w\ell = 16$, or $\ell = \frac{16}{w}$); not linear
- 2. a. Values in table will vary. Sample: (See Figure 2.)

- c. $w = \frac{20}{\ell}$; not linear
- **d.** The graphs are similar in shape, but the coordinates of the points are different.
- **e.** The equations have the same form, but the constant is different.

Figure 1

Rectangles With Area 16 in.²

Length (in.)	1	2	3	4	5	6	7	8
Width (in.)	16	8	<u>16</u> 3	4	<u>16</u> 5	<u>16</u> 6	<u>16</u> 7	2

Figure 2

Rectangles With Area 20 in.²

Length (in.)	1	2	3	4	5	6	7	8
Width (in.)	20	10	<u>20</u> 3	5	4	<u>10</u> 3	<u>20</u> 7	<u>5</u> 2

Answers | Investigation 3

- 3. Analyzing breaking weight data.
 - **a.** Answers will vary, but $y = \frac{24}{x}$, where x is the length and y is the breaking weight, is a reasonable choice.
 - **b.** In the equation $y = \frac{24}{x}$, x (or length) is in the denominator, so as x increases, y (or breaking weight) decreases. This is reasonable because the data show that as the length of a bridge increases, the strength decreases.
- 4. not an inverse variation
- **5.** inverse variation; $y = \frac{48}{x}$
- **6.** inverse variation; $y = \frac{100}{x}$
- 7. not an inverse variation
- **8. a.** Answers will vary, but should fit the patterns in the table and graph below.

Time (h)	Running Speed (mi/h)
2	13.1
3	8.73
4	6.55
5	5.24
6	4.37
7	3.74
8	3.28

Marathon Speeds

- **c.** decreases by 4.37 mi/h; decreases by 2.18 mi/h; decreases by 1.31 mi/h
- **d.** Equal changes in time do not always result in equal changes in average speed.

9. a.

Vehicle Type	Fuel Used (gal)	Fuel Efficiency (mi/gal)
Large Truck	20	10
Large SUV	18	11.11
Limousine	16	12.5
Large Sedan	12	16.67
Small Truck	10	20
Sports Car	12	16.67
Compact Car	7	28.57
Sub-Compact Car	5	40

- **c.** $e = 200 \div f$, where f is the amount of fuel used
- d. decreases by 20 mpg; decreases by 6.67 mpg; decreases by 3.33 mpg
- e. Equal changes in fuel use do not always lead to equal changes in fuel efficiency.

10. a. Charity Bike Ride

Time (h)	Riding Speed (mi/h)
4	12.5
8	6.25
12	4.17
16	3.125
20	2.5

Answers | Investigation 3

Charity Bike Ride

- **b.** $t = 50 \div s$, where s is the speed in miles per hour.
- c. decreases by 6.25 hours; decreases by 2.08 hours; decreases by 1.05 hours
- **d.** For constant change in average riding speed, the change in time is not constant.

11. a. (See Figure 3.)

b. $p = \frac{100}{p}$

- c. decreases by 25 points per question; decreases by 8.33 points per question; decreases by 4.17 points per question; decreases by 2.5 points per question
- **d.** For constant change in the number of questions, the change in points per question is not constant.

Connections

- **12. a.** slope positive, *y*-intercept 0, passes through the origin at (0, 0)
 - **b.** slope positive, *y*-intercept positive, crosses the *x*-axis to the left of the origin
 - **c.** slope 0, *y*-intercept negative, never crosses the *x*-axis
 - **d.** slope negative, *y*-intercept positive, crosses the *x*-axis to the right of the origin

e. slope negative, *y*-intercept negative, crosses the *x*-axis to the left of the origin

Answers | Investigation 3

14. a. (See Figure 4.)

Figure 4

Rectangles With Perimeter 500 ft

Length (ft)	50	100	150	200	225
Width (ft)	200	150	100	50	25

- b. Rectangles With Perimeter 500 ft 200 150 150 0 50 0 50 100 150 200 250 Length (ft)
- **c.** As length increases, width decreases. The rate of change is constant.
- **d.** $w = 250 \ell$ or $w = \frac{500 2\ell}{2}$. This function is linear. The graph is a straight line and the equation has the form y = mx + b.
- **15.** –2
- **16.** 3
- **17.** -2.5
- **18.** 2.11
- **19.** $-\frac{7}{3}$
- **20.** $-\frac{3}{7}$
- 21. A number and its additive inverse are the same distance from 0 on the number line. The labeled number line has reflection symmetry.(See Figure 5.)

- **22. 23.** $-\frac{1}{2}$
- **24.** 2
- **25.** $\frac{1}{4}$
- 26.
- 27.
- **28.** Numbers greater than 1 have multiplicative inverses between 0 and 1. Numbers less than -1 have multiplicative inverses between -1 and 0. (See Figure 6.)
- 29. C
- 30. a. 6.67
 - **b.** 7.62
 - **c.** because the relationship between number of guizzes and average guiz scores is not linear
- **31.** *x* = 5
 - 5x 28 = -35x = 25

x = 5

To solve with a graph, graph y = 5x - 28and find the x-coordinate of the point where y = -3. To solve with a table, make a table of (x, y) values for y = 5x - 28, find the x-value corresponding to y = -3.

$$10 - 3x = 7x - 10$$
$$10 = 10x - 10$$
$$20 = 10x$$
$$x = 2$$

To solve with a graph, graph y = 10 - 3xand y = 7x - 10, and find the x-coordinate of the intersection point. To solve with

a table, make a table of (x, y) values for y = 7x - 10 and y = 10 - 3x. Then find the x-value for which the y-values for the two equations are the same.

- **33.** $y = \frac{1}{2}x + 5$
- **34.** y = 3x 4
- **35.** y = -2x + 12
- **36.** $y = \frac{1}{4}x + 7$. To find the slope, take the points (30, 12) and (0, 7) on the line and find the vertical change (5) and the horizontal change (30). Slope is the ratio $\frac{\text{rise}}{\text{run}} = \frac{5}{30} = \frac{1}{6}$.
- **37. a.** A = 5n (Problem 3.3 Question D) and d = 50t (Problem 3.2 Question C). The ratio is 5 and the ratio is 50.
 - **b.** The ratio equals k in both cases.
 - **c.** *y* changes by *k* as *x* changes by 1. This pattern results in a straight-line graph with slope k.
 - **d.** With a direct variation the graph is a line, and the equation is of the form y = kx where the slope of the line equals k. With an inverse variation, the graph is a curve, and the equation is of the form $y = \frac{K}{x}$.
- **38.** Super Market charges about \$.58 per tomato and Gus's Groceries charges about \$.67.
- **38.** Super Market; Gus's Groceries charges about \$.44 per cucumber and Super Market charges \$.40.
- **40.** Gus's Groceries; Gus's Groceries charges \$.50 per apple and Super Market charges about \$.58.
- **41.** a. about \$0.53; \$3.20 ÷ 6 ≈ 0.53.
 - **b.** about \$5.30; $0.53 \times 10 \approx 5.3$
 - c. about 0.53*n* (or exactly $\frac{8}{15}n$)

Thinking With Mathematical Models

Extensions

42. a. If x is the number of tickets sold and y is the profit, then y = 4.5x - 150.

Spring Show Ticket Sales

Tickets Sold	Total Profit	Per-Ticket Profit		
0	-150			
50	\$75	\$1.50		
100	\$300	\$3.00		
150	\$525	\$3.50		
200	\$750	\$3.75		
250	\$975	\$3.90		
300	\$1,200	\$4.00		
350	\$1,425	\$4.07		
400	\$1,650	\$4.13		
450	\$1,875	\$4.17		
500	\$2,100	\$4.20		

d. See part (b) above.

- f. The pattern for total profit is linear; the pattern for per-ticket profit is not. The graph for total profit is a straight line; the graph for per-ticket profit is a curve. In the column for total profit, there is a constant difference in values; in the column for per-ticket profit, there is not. The per-ticket profit increases by smaller and smaller amounts as the number of tickets sold increases.
- **43. a.** 250 cm³
 - **b.** 10 cm by 10 cm by 2.5 cm
 - **c.** The surface area of the original prism is 250 cm². The surface area of the prism in part (b) is 300 cm². The surface area of the original prism is smaller.
- **44.** Ms. Singh traveled 80 mi in 3 hr, for an average speed of $\frac{80}{3}$ mi/h \approx 26.67 mi/h.
- **45.** (3, 16), (12, 4); 12*c* = 48, *c* = 4.

46.
$$(3, 9), (4, \frac{27}{4}); 4c = 27, c = \frac{27}{4}$$

- **47.** (3, 4), (4, 3); 4*c* = 12, *c* = 3.
- **48.** A
- **49.** G
- **50.** A

b.