
Investigation 1 Additional Practice

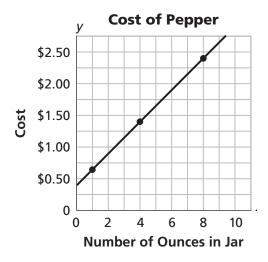
- **1. a.** 16;19
 - **b.** t = 3n + 1
 - **c.** n = 33; the 33rd figure will use 100 toothpicks.
 - **d.** To get to stage n from stage n 1, you need to add three toothpicks to make a new box, starting with the first box, which uses four toothpicks. OR: At stage n, you need n toothpicks for the bottom of the figure, n toothpicks for the top of the figure, and n + 1 toothpicks for the vertical lines.
 - e. Graph is a straight line through points (1, 4) and (2, 7) or a collection of discrete points at (1, 4), (2, 7), (3, 10), (4, 13). The *x*-axis is labeled something like "Figure Number" and the *y*-axis is labeled something like "Number of Toothpicks". Whole graph is labeled "Toothpicks Needed to Make the Figures"
 - **f.** The pattern is linear. For each new stage, we add three toothpicks.
- **2. a.** 11;13
 - **b.** t = 2n + 1
 - **c.** n = 30; the 30th figure will use 61 toothpicks.
 - **d.** To get to stage n from stage n 1, you need to add two toothpicks to make a new triangle, starting with the first triangle, which uses three toothpicks. OR: At stage n, you need n toothpicks for the top and bottom of the figure and n + 1 toothpicks for the sides.
 - e. Graph is a straight line through the points (1, 3) and (2, 5) or a collection of discrete points through (1, 3) (2, 5), (3, 7), (4, 9), (5, 11), etc. The *x*-axis is labeled something like "Figure Number" and the *y*-axis is labeled something like "Number of Toothpicks". Whole graph is labeled something like, "Toothpicks Needed to Make the Figures".
 - **f.** The pattern is linear. For each new stage, add two new toothpicks.

- **3. a.** 9;11
 - **b.** t = 2n 1
 - **c.** n = 13; the 13th figure will use 25 tiles.
 - **d.** To get to stage n from stage n 1, you need to add 2 tiles, starting with the first figure, which uses one tile. OR: At stage n, you need n tiles along the bottom and n 1 tiles vertically. (Or vice versa).
 - e. The graph is a straight line through the points (1, 1), (2, 3), (3, 5), (4, 7) or a discrete collection of points. The *x*-axis is labeled "figure number", the *y*-axis is labeled "number of tiles" and the whole graph is labeled "Tiles Needed to Make the Figures"
 - **f.** This is a linear pattern. At every stage, add two new tiles.
- **4. a.** 30; 42
 - **b.** $t = n^2 + n$
 - **c.** n = 20; the 20th figure will use 420 tiles.
 - **d.** At stage *n*, you need a square of size n^2 and *n* additional tiles.
 - **e.** Graph: same labels as last graph, but points are (1, 2), (2, 6), (3, 12), (4, 20).
 - f. The graph is not linear. A growing numbers of tiles is added at each stage. The rate of change is not constant.
- **5. a.** The more layers there are, the higher the breaking weight.

b. Possible prediction: 200 pennies.

Thinking With Mathematical Models Answers

6. a.

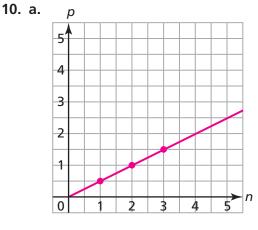

Day	15	16	17	18	19
Total Number of Squash	1	3	5	7	9

- **b.** 15;23
- **c.** Each day after the 15th, 2 more squash are produced.
- **d.** y = 2(x 15) + 1 or y = 2x 29, so long as $x \ge 15$ The coefficient of x is the number of

squash produced each day, after day 15.

7. a.

Number of Ounces in Jar	1	4	8	
Cost	\$0.65	\$1.40	\$2.40	


- **b.** \$0.90, \$1.15, \$1.90
- **c.** Each added ounce of pepper costs \$0.25. The jar costs \$0.40.
- **d.** y = 0.25x + 0.40

The coefficient of *x* is the cost of each ounce of pepper.

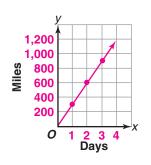
The constant term is the cost of the jar.

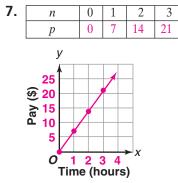
8. 2 **9.** □

•	Time (h)	1	3	4	6
	Miles traveled	35	105	140	210

Skill: Patterns and Predictions

- **1.** Missing time value: 3; missing distance value: 56
- **2.** Missing time value: 2; missing distance value: 3


3.
$$m = 8; n = 30$$
 4. $p = 2; q = 37$


5. a.

b.
Figure number
1
2
3
4
5

Number of Squares
5
8
11
14
17

3n + 2

Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved