Evaluate the following if a = -3, b = 8, and c = -4

Or

2.
$$a^2 + 7c - 1$$

$$(-3)^2 + 7(-4) - 1$$

9 - 28 - 1

Inv. 1.1 Recap

Class Data

Thickness (# of layers)	1	2	3	4	5	
# of pennies Group 1	6	12	17	25	38	
# of pennies Group 2	5	14	18	24	39	
# of pennies Group 3	5	12	16	27	36	
# of pennies Group 4	5	11	19	25	36	
# of pennies Group 5	4	1	18	26	42	
	5	9	15	36	36	?
					s this	rea

What do you notice?

- . Seems to be similar between groups
- · breaking weight increases with thickness

What could cause the variations in the data?

Variation can be due to experimental error:

- how you folded
- how pennius were dropped
- was cup in center
- · was there the I" overlap on the book

change in "x" Sample data: **Bridge-Thickness Experiment** 50 Breaking Weight (pennies) 41 41 41 41 40 30 Bridge-Thickness Experiment 20 Thickness (layers) **Breaking Weight** 16 24 (pennies) Thickness (layers)

Average increase = 8.25

Does the relationship between the number of layers and the breaking weight seem to be linear or nonlinear? How do the graph and the table show this relationship?

Lincar

· table: as the thickness inchases by 1 breaking wt increases by ~ 8.25

- · Graph: looks livear
- Suppose you could split layers of paper in half. What breaking weight would you predict for a bridge 2.5 layers thick? Explain.

· chack the differences on the table, divide by 2

Predict the breaking weight for a bridge 6 layers thick. Explain your reasoning.

Find the mean of the differences of the breaking weights and added to the weight for 5 layers.

predictions can be made using both the table and graph

Problem 1.1 Wrap Up

Sample data:

Bridge-Thickness Experiment

Thickness (layers)	1	2	3	4	5
Breaking Weight (pennies)	9	16	24	34	42

Should we connect our data points?

If discrete

What is a line?

We can split our units } Continuous Data

Discrete Data

Because in our experiment we cannot have a portion of a thickness of a sheet of paper, or a portion of a penny, we **cannot** connect our data points.

Should we connect our data points?

What is a line?

Each point represents an actual data point

You can only connect your data points if you can have fractions of your vnits. }

Discrete Data

Because in our experiment we cannot have a portion of a thickness of a sheet of paper, or a portion of a penny, we **cannot** connect our data points.

Always look at units if you want to know if you can connect your data points

Classwork

Page 16, # 2

2. A group of students conducted the bridge-thickness experiment with construction paper. The table below contains their results.

Bridge-Thickness Experiment

Number of Layers	1	2	3	4	5	6
Breaking Weight (pennies)	12	20	29	42	52	61

- a. Make a graph of the (number of layers, breaking weight) data. Describe the relationship between breaking weight and number of layers.
- b. Suppose it is possible to use half-layers of construction paper. What breaking weight would you predict for a bridge 3.5 layers thick? Explain.

Homework

Finish Classwork