

Applications

For Exercises 1–7, make a copy of the figure below. Then, find the image of the figure after each transformation.

1. Copy and complete the table showing the coordinates of points *A*–*E* and their images after a reflection in the *y*-axis.

Point	Α	В	С	D	Ε
Original Coordinates	(–5, 1)	(–2, 5)			
Coordinates After a y-axis Reflection					

- **a.** Draw the image.
- **b.** Write a rule relating coordinates of key points and their images after a reflection in the *y*-axis: $(x, y) \rightarrow (\blacksquare, \blacksquare)$.
- **2.** Add a row to your table from Exercise 1 to show the coordinates of points *A*–*E* and their images after a reflection in the *x*-axis.
 - a. Draw the image.
 - **b.** Write a rule relating coordinates of key points and their images after a reflection in the *x*-axis: $(x, y) \rightarrow (\square, \square)$.

- **3.** Add another row to your table from Exercise 1 to show the coordinates of points *A*–*E* and their images after a reflection in the *x*-axis, followed by a reflection in the *y*-axis.
 - **a.** Draw the final image.
 - **b.** Write a rule relating coordinates of key points and their images after both reflections: $(x, y) \rightarrow (\square, \square)$.
 - **c.** What single transformation in this Investigation has the same effect as the sequence of two line reflections?
- **4.** Copy and complete the table showing the coordinates of points *A*–*E* and their images after a translation that "moves" point *B* to point (3, 4).

Point	Α	В	С	D	Ε
Original Coordinates	(–5, 1)	(–2, 5)			
Coordinates After Translating <i>B</i> to (3, 4)					

- **a.** Draw the image.
- **b.** Write a rule relating coordinates of key points and their images after the translation: $(x, y) \rightarrow (\blacksquare, \blacksquare)$.

62

- **5.** Add a row to your table from Exercise 4 to show the coordinates of points A-E and their images after the first translation, followed by a translation that "moves" point B' to (-1, 0).
 - a. Draw the image.
 - **b.** Write a rule relating coordinates of key points and their images after the second translation: $(x, y) \rightarrow (\square, \square)$.
 - **c.** Write a rule relating coordinates of key points and their images after the sequence of the two translations: $(x, y) \rightarrow (\blacksquare, \blacksquare)$.
 - **d.** What single transformation is equivalent to the sequence of the two translations?
- **6.** Copy and complete the table showing the coordinates of points A-E and their images after a counterclockwise rotation of 90° about the origin.

Point	Α	В	С	D	E
Original Coordinates	(–5, 1)	(–2, 5)			-
Coordinates After a 90° Rotation					

- **a.** Draw the image.
- **b.** Write a rule relating coordinates of key points and their images after a rotation of 90° : $(x, y) \rightarrow (\square, \square)$.
- **7.** Add a row to your table from Exercise 6 to show the coordinates of points A-E and their images after two counterclockwise rotations of 90° about the origin.
 - **a.** Draw the final image.
 - **b.** Write a rule relating coordinates of key points and their images after both rotations: $(x, y) \rightarrow (\blacksquare, \blacksquare)$.
 - **c.** What single transformation is equivalent to the sequence of the two rotations?

8. a. Use triangle *ABC* shown in the diagram.

Copy and complete the table showing the coordinates of points *A*–*C* and their images after a reflection in the line y = x.

Point	Α	В	С
Original Coordinates			
Coordinates After a Reflection in $y = x$			

- **b.** Draw the image and label the vertices A', B', and C'.
- **c.** Add a row to your table to show the coordinates of points A-C and their images after a reflection of triangle A'B'C' in the *x*-axis.
- **d.** Draw the image and label the vertices *A*", *B*", and *C*".
- **e.** Draw the image of triangle *ABC* after the same two reflections, but in the reverse order. That is, reflect triangle *ABC* in the *x*-axis and then reflect its image, triangle A'B'C', in the line y = x. What does the result suggest about the commutativity of a sequence of line reflections?

- **9. a.** Use triangle *ABC* from Exercise 8. Draw triangle *ABC* on a coordinate grid.
 - i. Translate ABC according to the rule $(x, y) \rightarrow (x + 2, y 3)$. Label its image A'B'C'.
 - ii. Translate *ABC* according to the rule $(x, y) \rightarrow (x 4, y 6)$. Label its image A''B''C''.
 - **b.** Use the coordinates of the vertices of triangle *ABC* and its two images to compare the slopes of each pair of line segments.
 - **i.** \overline{AB} and $\overline{A'B'}$; \overline{AC} and $\overline{A'C'}$; \overline{CB} and $\overline{C'B'}$
 - **ii.** \overline{AB} and $\overline{A''B''}$; \overline{AC} and $\overline{A''C''}$; \overline{CB} and $\overline{C''B''}$
 - **c.** What do your results from parts (a) and (b) say about the effect of translations on the slopes of lines? About the relationship between a line and its image under a translation?
- **10. a.** Use triangle *ABC* from Exercise 8. Draw triangle *ABC* on a coordinate grid and its image after a 180° rotation about the origin. Label the image A'B'C'.
 - **b.** Use the coordinates of the vertices of triangle *ABC* and its image to compare the slopes of each pair of line segments.
 - **i.** \overline{AB} and $\overline{A'B'}$ **ii.** \overline{AC} and $\overline{A'C'}$ **iii.** \overline{CB} and $\overline{C'B'}$
 - **c.** What do your results from parts (a) and (b) say about the effect of half-turns or 180° rotations on the slopes of lines? About the relationship between a line and its image under a 180° rotation?
- **11.** In the diagram below, lines L_1 and L_2 are parallel. What are the measures of angles a-g?

12. What are the measures of angles *a* and *b* in the triangle at the right?

14. The diagram at the right shows parallelogram *ABCD* with one diagonal *DB*. Assuming only that opposite sides of any parallelogram are parallel:

- a. Which angles are congruent? How do you know?
- **b.** How can you be sure that triangle *ABD* is congruent to triangle *ADB*? What are the corresponding vertices, sides, and angles?
- **c.** How does the congruence of triangles *ABD* and *ADB* imply that the opposite angles of the parallelogram are congruent?
- **d.** How does the congruence of triangles *ABD* and *ADB* guarantee that, in a parallelogram, opposite sides are the same length?
- **15.** The diagram below shows a rectangle with two diagonals.

- **a.** How can you be sure that triangle *ABC* is congruent to triangle *BAD*?
- **b.** Why does this congruence guarantee that, in a rectangle, the diagonals are the same length?

66

Applicatior

Connections

16. Copy and complete the table of values for the function $y = -x^2$. Remember: $-(-3)^2 = -9$.

x	-3	-2	-1	0	1	2	3
У							

- **a.** Use the table of values to graph the function $y = -x^2$.
- **b.** Describe the symmetries of the graph of the function $y = -x^2$.
- **17.** Add a row to your table from Exercise 16 to show values of the function $y = -x^2 + 4$.
 - **a.** Use the values in the extended table. Graph $y = -x^2 + 4$ on the same coordinate grid as $y = -x^2$ from Exercise 16.
 - **b.** Write a coordinate rule that "moves"
 - i. the graph of $y = -x^2$ to the position of the graph of $y = -x^2 + 4$.
 - **ii.** the graph of $y = -x^2 + 4$ to the position of the graph of $y = -x^2$.
- **18.** Complete the table of values for the function y = |x|. Remember: |-4| = |4| = 4.

X	-4	-3	-2	-1	0	1	2	3	4
У									

- **a.** Use the table of values to graph the function y = |x|.
- **b.** Describe the symmetries of the graph of the function y = |x|.
- **19.** Add a row to your table from Exercise 18 to show values of the function y = |x| 3.
 - **a.** Use the values in the extended table. Graph y = |x| 3 on the same coordinate grid as y = |x| from Exercise 18.
 - **b.** Write a coordinate rule that "moves"
 - **i.** the graph of y = |x| to the position of the graph of y = |x| 3.
 - **ii.** the graph of y = |x| 3 to the position of the graph of y = |x|.

20. Points *A* and *B* are on the *x*-axis.

- **a.** Compare the *x*-coordinates of points *A* and *B*.
- **b.** Translate points *A* and *B* five units to right. Compare the *x*-coordinates of the image points.
- **c.** Translate points *A* and *B* five units to left. Compare the *x*-coordinates of the image points.
- **d.** Rotate points *A* and *B* 180° about the origin. Compare the x-coordinates of the image points.
- e. Write a general rule about the effect of adding or subtracting a constant *c* from two integers, *a* and *b*. Complete the following sentence: If *a* < *b*, then when you add a constant *c* to *a* and *b*....
- **f.** Write a general rule about the effect of multiplying integers *a* and *b* by -1. Complete the following sentence: If a < b, then when you multiply each by -1....

21. 22.

For Exercises 21 and 22, describe the symmetries of each design.

- **23. Multiple Choice** Squares, rectangles, and rhombuses are all types of parallelograms. Which of these statements is true for all parallelograms?
 - **A.** The diagonals are congruent.
 - **B.** Each diagonal divides the other in two congruent segments.
 - **C.** The diagonals divide a parallelogram into four congruent triangles.
 - **D.** The diagonals bisect the angles at each vertex.
- **24.** What is the area of triangle *ABC*?

25. What are the side lengths and the perimeter of triangle *ABC* from Exercise 24?

Extensions

For Exercises 26–28, draw the figure on grid paper. Then, use symmetry transformations to draw a design that meets the given condition(s). Describe the transformations you used and the order in which you applied them.

26. a design that has at least two lines of symmetry

27. a design that has rotational symmetry

R		\geq		4	y y				
				2					
									X
-4	1	-2	2	0		2	2	4	1
	1	-2	2	0 2		2	2	4	→ 1

28. a design that has both reflectional and rotational symmetry

		4	y		
		2			
					X
		_	_		
-4	-2	0		2	4
_4	-2	0 -2		2	4

29. Multiple Choice Which of these statements is *not* true about the figure below if lines *m* and ℓ are parallel?

- **F.** Reflecting the figure in the *y*-axis, and then reflecting the image in the *x*-axis, gives the same final image as rotating the figure 180° about the origin.
- **G.** Reflecting the figure in line ℓ , and then reflecting the image in the *y*-axis, gives the same final image as reflecting the figure in line *m*.
- **H.** Reflecting the figure in the *y*-axis and then rotating the image 180° about the origin gives the same final image as reflecting the figure in the *x*-axis.
- **J.** Rotating the figure 90° counterclockwise about the origin and then rotating the image another 90° counterclockwise gives the same image as rotating the original image 180° about the origin.

30. Investigate what happens when you rotate a figure 180° about a point and then rotate the image 180° about a different point. Is the combination of the two rotations equivalent to a single transformation? Test several cases and make a conjecture about the result.

You might start your investigation with the figures below. Copy them onto grid paper. Rotate each polygon 180° about point C_1 and then 180° about point C_2 .

- **31.** Plot points P(-2, 4) and Q(2, 1) on a coordinate grid.
 - **a.** Find the coordinates of the points P' and Q' that are the images of points P and Q after a reflection in the *x*-axis. Then, use the Pythagorean Theorem to prove that PQ = P'Q'.
 - **b.** Find coordinates of the points P'' and Q'' that are the images of points P and Q after a counterclockwise rotation of 180° about the origin. Then, prove that PQ = P''Q''.
 - **c.** Find coordinates of the points P''' and Q''' that are the images of points *P* and *Q* after a translation with the rule $(x, y) \rightarrow (x + 3, y 5)$. Then, prove that PQ = P'''Q'''.