

# **Applications**

1. Chen, from Problem 4.1, finds that his ballots are very small after only a few cuts. He decides to start with a larger sheet of paper. The new paper has an area of 324 in.<sup>2</sup>. Copy and complete this table to show the area of each ballot after each of the first 10 cuts.

| Number of Cuts | Area (in. <sup>2</sup> ) |  |  |  |  |
|----------------|--------------------------|--|--|--|--|
| 0              | 324                      |  |  |  |  |
| 1              | 162                      |  |  |  |  |
| 2              | 81                       |  |  |  |  |
| 3              |                          |  |  |  |  |
| 4              |                          |  |  |  |  |
| 5              |                          |  |  |  |  |
| 6              |                          |  |  |  |  |
| 7              |                          |  |  |  |  |
| 8              |                          |  |  |  |  |
| 9              |                          |  |  |  |  |
| 10             |                          |  |  |  |  |

### **Areas of Ballots**

- **a.** Write an equation for the area *A* of a ballot after any cut *n*.
- **b.** With the smaller sheet of paper, the area of a ballot is 1 in.<sup>2</sup> after 6 cuts. Start with the larger sheet. How many cuts does it take to get ballots this small?
- c. Chen wants to be able to make 12 cuts before getting ballots with an area of 1 in.<sup>2</sup>. How large does his starting piece of paper need to be?

**2.** During the exploration of Problem 4.1, several groups of students in Mrs. Dole's class made a conjecture. They conjectured that the relationship between the number of cuts and the area of the ballot was an *inverse variation* relationship.

The class came up with two different arguments for why the relationship was not an inverse variation.

### Argument 1

An inverse variation situation has a "factor-pair" relationship. Choose some constant number k. The two factors multiply to equal k, such as yx = k. For example, if the area of rectangle with length, l, and width, w, is 24,000 square feet, then 24,000 = lw. This is an inverse variation.

In an exponential relationship, the values of the two variables x and y do not have this "factor-pair" relationship. For example,

in Problem 4.1, the equation is  $A = 64\left(\frac{1}{2}\right)^n$ , but A and n do not multiply to get a constant number.

### Argument 2

Any inverse variation will never have a y-intercept and this relationship does. Therefore, this relationship is not an inverse variation.

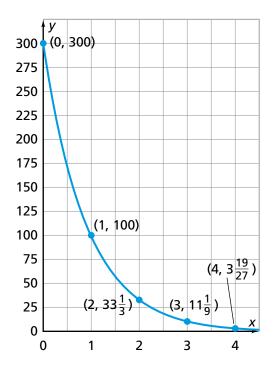
Which argument is correct? Explain why the students might have made this conjecture.

- **3.** Latisha has a 24-inch string of licorice (LIK uh rish) to share with her friends. As each friend asks her for a piece, Latisha gives him or her half of what she has left. She doesn't eat any of the licorice herself.
  - **a.** Make a table showing the length of licorice Latisha has left each time she gives a piece away.
  - **b.** Make a graph of the data from part (a).
  - **c.** Suppose that, instead of half the licorice that is left each time, Latisha gives each friend 4 inches of licorice. Make a table and a graph for this situation.
  - **d.** Compare the tables and the graphs for the two situations. Explain the similarities and the differences.

- **4.** Penicillin decays exponentially in the human body. Suppose you receive a 300-milligram dose of penicillin to combat strep throat. About 180 milligrams will remain active in your blood after 1 day.
  - **a.** Assume the amount of penicillin active in your blood decreases exponentially. Make a table showing the amount of active penicillin in your blood for 7 days after a 300-milligram dose.
  - **b.** Write an equation for the relationship between the number of days *d* since you took the penicillin and the amount of the medicine *m* remaining active in your blood.
  - c. What is the equation for a 400-milligram dose?

For Exercises 5 and 6, tell whether the equation represents exponential decay or exponential growth. Explain your reasoning.

- **5.**  $y = 0.8(2.1)^x$
- **6.**  $y = 20(0.5)^x$
- 7. The graph below shows an exponential decay relationship.



- **a.** Find the decay factor and the *y*-intercept.
- **b.** What is the equation for the graph?

68

For Exercises 8 and 9, use the table of values to determine the exponential decay equation. Then, find the decay factor and the decay rate.

| 8. | X | У       |
|----|---|---------|
|    | 0 | 24      |
|    | 1 | 6       |
|    | 2 | 1.5     |
|    | 3 | 0.375   |
|    | 4 | 0.09375 |

| 9. | X | У   |
|----|---|-----|
|    | 0 | 128 |
|    | 1 | 96  |
|    | 2 | 72  |
|    | 3 | 54  |

For Exercises 10–13, use Lara's conjecture below. Explain how you found your answer.

### Lara's Conjecture

If you know the y-intercept and another point on the graph of an exponential function, then you can find all the other points.

- **10.** The exponential decay graph has *y*-intercept = 90, and it passes through (2, 10). When x = 1, what is *y*?
- **11.** The exponential decay graph has *y*-intercept = 40, and it passes through (2, 10). When x = 4, what is *y*?
- **12.** The exponential decay graph has *y*-intercept = 75, and it passes through (2, 3). When x = -2, what is *y*?
- **13.** The exponential decay graph has *y*-intercept = 64, and it passes through (3, 0.064). When x = 2, what is *y*?

**14.** Karen shops at Aquino's Groceries. Her bill came to \$50 before tax. She used two of the coupons shown below.



Karen was expecting to save 10%, which is \$5. The cashier rang up the two coupons. Karen was surprised when the total price rang up as \$45.13 before tax. She was not sure why there was an extra \$0.13 charge.

- **a.** What would explain why the coupons did not take off 10% the way Karen expected?
- **b.** Write an equation to represent the total amount Karen would spend based on the number of coupons she would use.
- c. Karen had originally thought that if she used 10 coupons on her next trip to Aquino's Groceries she would save 50%. Her bill is still \$50. How much would Karen actually spend?
- **d.** How many coupons would you estimate it would take for Karen to get the \$50 of groceries for free?
- **15.** Hot coffee is poured into a cup and allowed to cool. The difference between coffee temperature and room temperature is recorded every minute for 10 minutes.

#### **Cooling Coffee**

| Time (min)                  | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-----------------------------|----|----|----|----|----|----|----|----|----|----|----|
| Temperature Difference (°C) | 80 | 72 | 65 | 58 | 52 | 47 | 43 | 38 | 34 | 31 | 28 |

- **a.** Plot the data (*time, temperature difference*). Explain what the patterns in the table and the graph tell you about the rate at which the coffee cools.
- **b.** Approximate the decay factor for this relationship.
- **c.** Write an equation for the relationship between time and temperature difference.
- **d.** About how long will it take the coffee to cool to room temperature? Explain.

- **16.** The pizza in the ad for Mr. Costa's restaurant has a diameter of 5 inches.
  - a. What are the circumference and area of the pizza in the ad?
  - **b.** Mr. Costa reduces his ad to 90% of its original size. He then reduces the reduced ad to 90% of its size. He repeats this process five times. Extend and complete the table to show the diameter, circumference, and area of the pizza after each reduction.

#### **Advertisement Pizza Sizes**

| <b>Reduction Number</b> | Diameter (in.) | Circumference (in.) | Area (in. <sup>2</sup> ) |
|-------------------------|----------------|---------------------|--------------------------|
| 0                       | 5              |                     |                          |
| 1                       |                |                     |                          |

- **c.** Write equations for the diameter, circumference, and area of the pizza after *n* reductions.
- **d.** How would your equations change if Mr. Costa had used a reduction setting of 75%?
- e. Express the decay factors from part (d) as fractions.
- f. Mr. Costa claims that when he uses the 90% reduction setting on the copier, he is reducing the size of the drawing by 10%. Is Mr. Costa correct? Explain.
- **17.** Answer parts (a) and (b) without using your calculator.
  - a. Which decay factor represents faster decay, 0.8 or 0.9?
  - **b.** Order the following from least to greatest:

 $0.9^4$   $0.9^2$  90%  $\frac{2}{10}$   $\frac{2}{9}$   $0.8^4$  0.84

- **18.** Natasha and Michaela are trying to find growth factors for exponential functions. They claim that if the independent variable is increasing by 1, then you divide the two corresponding *y* values to find the growth factor. For example, if  $(x_1, y_1)$  and  $(x_2, y_2)$  are two consecutive entries in the table, then the growth factor is  $y_2 \div y_1$ .
  - **a.** Is their reasoning correct? Explain.
  - **b.** Would this method work to find the growth pattern for a linear function? Explain.

71

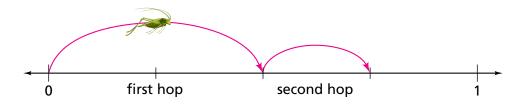
## **Connections**

#### For Exercises 19–22, write each number in scientific notation.

- **19.** There are about 33,400,000,000,000,000,000,000 molecules in 1 gram of water.
- **20.** There are about 25,000,000,000 red blood cells in the human body.
- **21.** Earth is about 93,000,000 miles (150,000,000 km) from the sun.
- **22.** The Milky Way galaxy is approximately 100,000 light years in diameter. It contains about 300,000,000,000 stars.
- **23.** Consider these equations:

 $y = 0.75^x$   $y = 0.25^x$  y = -0.5x + 1

- a. Sketch graphs of all three equations on one set of coordinate axes.
- **b.** What points, if any, do the three graphs have in common?
- **c.** In which graph does *y* decrease the fastest as *x* increases?
- **d.** How can you use your graphs to figure out which of the equations is not an example of exponential decay?
- **e.** How can you use the equations to figure out which is not an example of exponential decay?
- **24.** A cricket is on the 0 point of a number line, hopping toward 1. She covers half the distance from her current location to 1 with each hop. So, she will be at  $\frac{1}{2}$  after one hop,  $\frac{3}{4}$  after two hops, and so on.



- **a.** Make a table showing the cricket's location for the first 10 hops.
- **b.** Where will the cricket be after *n* hops?
- **c.** Will the cricket ever get to 1? Explain.

72

### Extensions

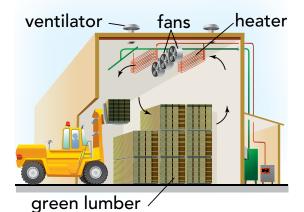
# **Extensions**

**25.** Freshly cut lumber, known as *green lumber*, contains water. If green lumber is used to build a house, it may crack, shrink, and warp as it dries. To avoid these problems, lumber is dried in a kiln that circulates air to remove moisture from the wood.

Suppose that, in 1 week, a kiln removes  $\frac{1}{3}$  of the moisture from a stack of lumber.

**a.** What fraction of the moisture remains in the lumber after 5 weeks in a kiln?

## **GREEN LUMBER KILN**



- **b.** What fraction of the moisture has been removed from the lumber after 5 weeks?
- **c.** Write an equation for the fraction of moisture *m* remaining in the lumber after *w* weeks.
- **d.** Write an equation for the fraction of moisture *m* that has been removed from the lumber after *w* weeks.
- **e.** Graph your equations from parts (c) and (d) on the same set of axes. Describe how the graphs are related.
- **f.** A different kiln removes  $\frac{1}{4}$  of the moisture from a stack of lumber each week. Write equations for the fraction of moisture remaining and the fraction of moisture removed after *w* weeks.
- **g.** Graph your two equations from part (f) on the same set of axes. Describe how the graphs are related. How do they compare to the graphs from part (e)?
- h. Green lumber is about 40% water by weight. The moisture content of lumber used to build houses is typically 10% or less. For each of the two kilns described above, how long should lumber be dried before it is used to build a house?