Warm Up

Write the equation for the data in the table below?

		4	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+	 	
0	١X	2	3	4	5	
(2	Y. (48	192	768	3072	
y-10	12 K	-4 X	4 ×4	x 4		Growth Factor

Let's use Algebra to find the y-int:

$$y = ab^{x}$$

$$y = a(4)^{x}$$

$$y = a(4)^{x}$$

$$(2.46)$$

$$48 = a(4)^{2}$$

$$4^{2}$$

$$4^{2}$$

$$4^{2}$$

$$3 = a$$

Questions on Problem 3.2?

Answers to Problem 3.2

A. 1. Sam's Stamp Collection at 6%

Year	Value	
0	\$2,500	
1	\$2,650	
2	\$2,809	
3	\$2,977.54	
4	\$3,156.19	
5	\$3,345.56	

Every year we have by more

- **2.** Yes. This is exponential growth with a growth factor of 1.06.
- **3.** $v = 2,500(1.06)^n$
- It will take about 12 years to double the value of the investment.

B. 1. Sam's Stamp Collection at 4%

Year	Value	
0	\$2,500	
1	\$2,600	> × 1.04
2	\$2,704	7 * 1,04
3	\$2,812.16	> × 1.04
4	\$2,924.65	
5	\$3,041.63	

4% every

- **2.** 1.04
- 3. $v = 2,500(1.04)^n$
- **4.** It will take about 18 years to double the value of the investment.
- **5.** The graph of the equation for 6% growth rate will increase faster than the graph of the equation for 4% growth rate.

2. Possible answer: Change the growth rate to a decimal and add 1. (Be sure students know why this works.)

2. Possible answer: Change the growth factor to a percent and subtract 100%. (Be sure students know why this works.)

Do you notice the relationship between the factor and the growth rate?

33% growth

Factor = 1 + 0.33 = 1.33

What is the factor for 63% inchase?

What is the % change if the factor = 3.24

Classwork

Page 50, #'s 10-16, 19, 41, 43-45

Find the growth rate associated with the given growth factor.

10. 1.4

11. 1.9

12. 1.75

Find the growth factor associated with the given growth rate.

13. 45%

14. 90%

15. 31%

16. Suppose the price of an item increases by 25 % per year. What is the growth factor for the price from year to year?

- **19.** Suppose a movie ticket costs about \$7, and inflation causes ticket prices to increase by 4.5 % a year for the next several years.
 - **a.** How much will a ticket cost 5 years from now?
 - **b.** How much will a ticket cost 10 years from now? 30 years from now?
 - **c.** How many years will it take for the cost of a ticket to exceed \$26?

- **41.** In 2000, the population of the United States was about 282 million and was growing exponentially at a rate of about 1 % per year.
 - **a.** At this growth rate, what will the population of the United States be in the year 2020?
 - **b.** At this rate, how long will it take the population to double?
 - **c.** The population in 2010 was about 308 million. How accurate was the growth rate?

For Exercises 43–45,	write an equation that represents the exponential
function in each situ	lation.

43. A population is initially 300. After 1 year, the population is 361.

44. A population has a yearly growth factor of 1.2. After 3 years, the population is 1,000.

45. The growth rate for an investment is 3 % per year. After 2 years, the value of the investment is \$2,560.

Homework

Finish classwork