8-1

Study Guide and Intervention (continued)

Multiplying Monomials

Powers of Monomials An expression of the form $(x^m)^n$ is called a **power of a power** and represents the product you obtain when x^m is used as a factor n times. To find the power of a power, multiply exponents.

Power of a Power	For any number a and all integers m and n , $(a^m)^n = a^{mn}$.
Power of a Product	For any number a and all integers m and n , $(ab)^m = a^m b^m$.

Example

Simplify $(-2ab^2)^3(a^2)^4$.

$$\begin{array}{ll} (-2ab^2)^3(a^2)^4 = (-2ab^2)^3(a^8) & \text{Power of a Power} \\ &= (-2)^3(a^3)(b^2)^3(a^8) & \text{Power of a Product} \\ &= (-2)^3(a^3)(a^8)(b^2)^3 & \text{Commutative Property} \\ &= (-2)^3(a^{11})(b^2)^3 & \text{Product of Powers} \\ &= -8a^{11}b^6 & \text{Power of a Power} \end{array}$$

The product is $-8a^{11}b^6$.

Exercises

Simplify.

1.
$$(y^5)^2$$

2.
$$(n^7)^4$$

3.
$$(x^2)^5(x^3)$$

4.
$$-3(ab^4)^3$$

5.
$$(-3ab^4)^3$$

6.
$$(4x^2b)^3$$

7.
$$(4a^2)^2(b^3)$$

8.
$$(4x)^2(b^3)$$

9.
$$(x^2y^4)^5$$

10.
$$(2a^3b^2)(b^3)^2$$

11.
$$(-4xy)^3(-2x^2)^3$$

12.
$$(-3j^2k^3)^2(2j^2k)^3$$

13.
$$(25a^2b)^3 \left(\frac{1}{5}abc\right)^2$$

14.
$$(2xy)^2(-3x^2)(4y^4)$$

15.
$$(2x^3y^2z^2)^3(x^2z)^4$$

16.
$$(-2n^6y^5)(-6n^3y^2)(ny)^3$$

17.
$$(-3a^3n^4)(-3a^3n)^4$$

18.
$$-3(2x)^4(4x^5y)^2$$