Applications

1.
$$g(x) = f(x) + 2$$

E

2. h(x) = f(x) - 1

3. j(x) = 0.5f(x)

4. k(x) = 1.5f(x)

5. m(x) = -2f(x)

6. n(x) = f(x - 1)

7. p(x) = f(x + 0.5)

9. r(x) = f(x - 1) + 2

 The table below summarizes the characteristics of the graphs and function rules. (See Figure 1.)

Connections

11. $(x, y) \rightarrow (x - 4, y - 2)$; translation

- **12.** $(x, y) \rightarrow (-x, -y)$; flip over x-axis and over y-axis
- **13.** $(x, y) \rightarrow (-x + 4, -y)$; flip over x-axis, flip over y-axis, and translation

14. $(x, y) \rightarrow (x + 6, y)$; translation

15. $(x, y) \rightarrow (2x + 3, 2y)$; dilation and translation

Figure 1

Function Rule	Parabola	Line of Symmetry	Vertex
$a(x)=x^2$	3	<i>x</i> = 0	minimum point (0, 0)
$b(x)=(x-2)^2$	5	<i>x</i> = 2	minimum point (2, 0)
$c(x) = -(x-2)^2 - 2$	7	<i>x</i> = 2	maximum point (2, –2)
$d(x) = (x + 2)^2 - 2$	1	<i>x</i> = -2	minimum point (–2, –2)
$e(x)=0.5x^2$	2	<i>x</i> = 0	minimum point (0, 0)
$f(x)=1.5x^2$	4	<i>x</i> = 0	minimum point (0, 0)
$g(x)=-(x-3)^2$	6	<i>x</i> = 3	maximum point (3, 0)
$h(x)=-x^2-2$	8	<i>x</i> = 0	maximum point (0, –2)

.

Extensions

- **16.** The function $f(x) = x^2 4x 5$ can also be expressed as f(x) = (x 5)(x + 1) and $f(x) = (x 2)^2 9$.
 - **a.** There are many ways to show equivalence of the three quadratic expressions. You can expand the factored and vertex forms as shown below.

$$(x-5)(x+1) = (x-5)(x) + (x-5)(1)$$
(Distributive Property)

$$= x^{2} - 5x + x - 5$$
(Distributive Property)

$$= x^{2} + (-5x) + (1)x - 5$$
(Rewrite subtraction as
equivalent addition.)

$$= x^{2} + (-5x + 1x) - 5$$
(Associative Property)

$$= x^{2} + (-5 + 1)x - 5$$
(Distributive Property)

$$= x^{2} - 4x - 5$$
 (Arithmetic)

$$(x-2)^{2} - 9 = (x-2)(x-2) - 9$$
(Square of a Binomial)

$$= x^{2} - 4x + 4 - 9$$
 (Expand
product of binomials
as above.)

$$= x^{2} - 4x - 5$$
 (Arithmetic)

$$= x^{2} - 4x - 5$$
 (Arithmetic)

b. The *y*-intercept point is (0, -5). It is found from the standard polynomial form. The *x*-intercept points are (5, 0)and (-1, 0). These are found from the factored form and the principle that a product is zero when either factor is zero. The line of symmetry is x = 2 and the minimum point is (2, -9). These are found from inspecting the vertex form, which tells us that the basic $y = x^2$ has been translated right 2 and down 9.

- **17.** a. When $f(x) = x^2 4x 5$, $f(2x) = 4x^2 - 8x - 5$.
 - **b.** The graphs of the two functions will be as shown here:

- c. (See Figure 2.)
- **d.** The effect of the substitution of 2x for x is a compression of the graph of f(x) toward the y-axis by a factor of $\frac{1}{2}$. As a result, the x-intercepts (zeros) of the function and the line of symmetry x location are shrunk by a factor of 2. The y-intercept and minimum point are unchanged.

		0
FIG	ure	Z
		_

	<i>y</i> -intercept	<i>x</i> -intercepts	Line of Symmetry	Minimum Point
f(x)	(0, -5)	(5, 0), (-1, 0)	<i>x</i> = 2	(2, –9)
f(2x)	(0, -5)	(2.5, 0), (-0.5, 0)	<i>x</i> = 1	(1, –9)

Answers | Investigation 3

- **18.** a. When $f(x) = x^2 4x 5$, $f(0.5x) = 0.25x^2 - 2x - 5$.
 - **b.** The graphs are shown here.

- c. (See Figure 3.)
- d. The effect of the substitution of 0.5x for x is a stretching of the graph of f(x) away from the y-axis by a factor of 2. As a result, the x-intercepts or zeros of the function are doubled, as is the line of symmetry x location. Also the x-value of the minimum point is doubled. The y-intercept and the y-value of the minimum point are unchanged.
- **19.** The effect of the substitution of kx for x is a compression or stretching of the graph of f(x) toward or away from the *y*-axis by a factor of $\frac{1}{k}$. As a result, the *x*-intercepts or zeros of the function are changed by a factor of $\frac{1}{k}$ as is the line of symmetry location. But the *y*-intercept is unchanged. In general, the minimum or maximum point will have its *x*-coordinate changed by a factor of $\frac{1}{k}$ but its *y*-coordinate will be unchanged.

20. a. Because $f(x) = x^2$ has a graph that is symmetric about the line x = 0 and has only (0, 0) as its *x*-intercept, f(3x) has the same line of symmetry and *x*-intercepts. It also has the same minimum point and *y*-intercept.

b. In this case, f(x) again has line of symmetry x = 0, so that is not changed by horizontal stretching or compression. However, the x-intercepts or zeros of f(x) are (-1, 0) and (1, 0), and those of f(0.5x) are (-2, 0) and (2, 0). The y-intercept and minimum point, both (0, -1), are unchanged by the stretching.

	<i>y</i> -intercept	<i>x</i> -intercepts	Line of Symmetry	Minimum Point
f(x)	(0, -5)	(5, 0), (–1, 0)	<i>x</i> = 2	(2, –9)
f(0.5x)	(0, -5)	(10, 0), (-2, 0)	<i>x</i> = 4	(4, -9)

Figure 3

Answers Investigation 3

c. $f(x) = x^2 - 6x$ has line of symmetry x = 3 and x-intercepts (0, 0) and (6, 0). $f(2x) = 4x^2 - 12x$ has line of symmetry x = 1.5 and x-intercepts (0, 0) and (3, 0). Both functions have y-intercept (0, 0). The minimum point of f(x) is (3, -9), and the minimum point of f(2x) is (1.5, -9).

붉

These examples are all consistent with the conjecture described in Exercise 19.